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Abstract

This paper presents a randomized algorithm called Ratchet that asymptotically minimizes
(with probability 1) functions that satisfy a positive–linear–dependent (PLD) property. We
establish the PLD property and a corresponding realization of Ratchet for a generalized loss
criterion for both linear machines and linear classifiers. We describe several learning criteria
that can be obtained as special cases of this generalized loss criterion, e.g. classification error,
classification loss and weighted classification error. We also establish the PLD property and a
corresponding realization of Ratchet for the Neyman–Pearson criterion for linear classifiers.
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1 Introduction

To motivate the concepts introduced in this paper we describe two learning problems which
possess a common property that enables a unified approach to algorithm development. We
begin with some definitions. Let z ∈ Rm and ω ∈ Rm. We say that z is ω–positive if ω · z > 0
(where · is the usual inner product). Let I be a countably infinite set and consider a set
Z = {(z1, i1), ..., (zn, in)} ⊆ Rm×I where zj ∈ Rm and {i1, ..., in} ⊂ I (this definition allows the
set Z to have repeated values of z distinguished by their index value i). We use the abbreviated
notation Z = {zi1 , ..., zin} for this set and we call this type of set a multisample. In addition
we call {i1, ..., in} the index set for Z. Similarly we denote the subset {(zj , ij), ..., (zk, ik)} ⊆ Z
by {zij , ..., zik} and refer to it as a subsample of Z with index set {ij , ..., ik} ⊆ {i1, ..., in}. We
define Z+ ⊆ Z to be a positive linear (PL) subsample of Z if there exists an ω ∈ Rm such that
all members of Z+ are ω–positive, and define

Ω+ = {ω : ω · zi > 0,∀zi ∈ Z+}

to be the witness set for Z+. For technical reasons we define the empty set to be a PL
multisample with the whole space as its witness set. Finally we define P (Z) = {Z+

1 , Z
+
2 , ...} to

be the (finite) set of all PL subsamples Z+
i of Z.

In the first problem we are given a multisample Z = {z1, ..., zn} and asked to determine a
value ω ∈ Rm that maximizes the criterion R(ω) = |{zi : ω · zi > 0, i = 1, 2, ..., n}|. Geomet-
rically we seek a hyperplane through the origin that dichotomizes Rm so that the number of
samples in the positive half–space is maximized. This problem bares an obvious relation to
the problem of determining a linear classifier that maximizes the number of correctly classified
training samples. Now consider the collection of all linear dichotomies of Z and the correspond-
ing collection of PL subsamples of Z formed from the positive samples of these dichotomies.
These PL subsamples form a subset of P (Z) that accounts for all criterion values, that is the
criterion values for this problem are witnessed by this subset of P (Z).

In our second problem we are given a multisample Z̄ = {z̄1, ..., z̄n} where z̄i = (zi1, zi2) ∈
R

2m and we are asked to determine a value ω ∈ Rm that maximizes the criterion R(ω) =
|Z̄+(ω)|, where Z̄+(ω) = {z̄i : ω · zi1 > 0 and ω · zi2 > 0, i = 1, 2, ..., n}. Geometrically we seek
a hyperplane through the origin that dichotomizes Rm so that the number of sample pairs in the
positive half–space is maximized. This problem is closely related to the problem of determining
a linear machine that maximizes the number of correctly classified training samples for a three–
class classification problem (e.g. see (Cannon, Fugate, Hush, & Scovel, 2003)). Now define the
map Z̄ → Z from paired samples to individual samples by Z = {z11, z12, z21, z22, ..., zn1, zn2}.
This induces a map from Z̄+(ω) to {zij : z̄i ∈ Z̄+(ω)}, which is the PL subsample of Z
containing all the individual samples from ω–positive sample pairs. Now consider the collection
of such PL subsamples defined by all ω ∈ Rm. This collection forms a subset of P (Z) that
accounts for all criterion values, that is the criterion values for this problem are witnessed by
this subset of P (Z).

Although the witness subset for the first problem may be different than the second, the
two problems above are similar in that their criterion values are witnessed by some subset
of P (Z). This paper describes several important learning problems that share this property.
In principle all such problems can be solved in a finite number of steps by searching over a
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finite subset of Rm that witnesses the members of P (Z), but this approach is not efficient since
|P (Z)| can be exponential in the dimension m. Furthermore, the specific problems of interest
here can all be shown to be NP–Hard. On the other hand, the first problem above can be
solved by the Pocket algorithm (Gallant, 1990). Pocket is a simple randomized algorithm
that produces an optimal solution asymptotically (with probability 1), and has proven to be
effective in empirical studies where it is terminated after a finite number of steps (Burgess,
Zenzo, & Granieri, 1992; Gallant, 1990; Golea & Marchand, 1990; Windeatt & Tebbs, 1997).
In this paper we show how to modify the Pocket algorithm to obtain a simple randomized
algorithm we call Ratchet that visits every member of P (Z) (asymptotically with probability
1) and therefore produces an optimal solution to any problem whose minimum criterion value
is witnessed by an element of P (Z). We chose the name Ratchet for this algorithm because it
employs the “ratchet mechanism” (described in Section 3.2) introduced by Gallant (Gallant,
1990).

Formally the Ratchet algorithm minimizes functions that satisfy a property we call positive–
linear–dependent (PLD). Section 2 defines the PLD property and presents the Ratchet algo-
rithm. To realize Ratchet for a particular function we must construct a map φ that witnesses
the PLD property. Section 3 establishes maps φ that witness the PLD property for a gener-
alized loss criterion for both linear machines and linear classifiers. Several important learning
criteria are obtained as special cases of this generalized loss criterion. This section also shows
how, for linear classifiers, the Ratchet algorithm can be derived as a modification of the Pocket
algorithm (Gallant, 1990). In Section 4 we show how Ratchet can be applied to the Neyman–
Pearson learning problem by establishing a map φ that witnesses the PLD property for the
Neyman–Pearson criterion. In Section 5 we describe an experimental result.

2 PLD Criteria and the Ratchet Algorithm

The Ratchet algorithm was introduced by Cannon et al. (Cannon et al., 2003) to solve a
learning problem related to the task of selecting a restoration method for digitized documents
in such a way that the average OCR error of the documents is reduced. This section summarizes
the relevant results from that paper.

We consider minimization problems with criteria R that satisfy the following definition.

Definition 2.1. Let A be a set and let R be a function from A × Rm to R. Suppose that
for every A ∈ A, RA = R(A, ·) achieves its infimum on a nontrivial set Ω∗(A) ⊆ Rm. Then
R is a positive–linear–dependent (PLD) function if there exists a map to multisamples φ :
A →→ R

m × I, such that for every A ∈ A there exists a PL subset of the multisample
φ(A) = {zi1 , zi2 ...}, zij ∈ Rm, {i1, i2, ...} ⊂ I whose witness set Ω+ satisfies Ω+ ⊆ Ω∗(A).

In our application to learning problems A is the set of all training sets, Rm is the classifier
parameter space, and ω ∈ Rm is chosen to minimize an empirical error function RA.

The Ratchet algorithm, Algorithm 1, is a simple algorithm for optimizing a PLD criterion
when a map φ is known. This algorithm simply runs the randomize perceptron algorithm on
the multisample Z = φ(A), computes the criterion value RA each time ω changes value and
saves the one with the smallest criterion value. The following theorem from Cannon, et al.
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(Cannon et al., 2003) establishes the optimality of this algorithm. The central idea in the proof
of this theorem is to show that with probability 1 the ω visited by the randomized perceptron
algorithm witness every PL subset of Z.

Theorem 2.1. Let R be a PLD criterion witnessed by a map φ. For every A ∈ A consider
the sequence ω(k), k = 0, 1, ... produced by the Ratchet algorithm with inputs A,R, φ. Let
ω∗(k), k = 0, 1, ... be a sequence that satisfies ω∗(k) ∈ arg minω(i):i=0,1,...,k RA(ω(i)). Then

RA(ω∗(k))
wp1→ min

ω
RA(ω)

where wp1 denotes “with probability 1”.

Algorithm 1 The version of Ratchet shown below runs indefinitely. In practice however this
algorithm is terminated when k reaches a predetermined value. At this point the value of ω∗,
which corresponds the lowest criterion value encountered prior to termination, is returned.

INPUTS: An element A ∈ A, a criterion function R, and a map φ

{Compute the multisample Z}
Z = {zi1 , ..., zin} ← φ(A)

{Initialize parameters.}
Set ω(0) and ω∗ to zero and set R∗ ← RA(ω∗).

{Perform the randomized perceptron algorithm and track the best solution.}
k ← 0
loop
i← random sample index drawn uniformly from {i1, i2, ..., in}
if (ω(k) · zi ≤ 0) then
ω(k + 1)← ω(k) + zi
if (RA(ω(k + 1)) < R∗) then
R∗ ← RA(ω(k + 1))
ω∗ ← ω(k + 1)

end if
else
ω(k + 1)← ω(k)

end if
k ← k + 1

end loop

To realize Ratchet for a particular PLD criterion we must construct a map φ that witnesses
the PLD property. To assist in the determination of such a map, and in verification of the PLD
property, the following lemma was established in Cannon et al. (Cannon et al., 2003). This
lemma gives sufficient conditions that can be checked once a map φ has been proposed.

Lemma 2.1. Let A be a set and let R be a function from A × Rm to R. Suppose that for
every A ∈ A, RA = R(A, ·) achieves its infimum on a nontrivial set Ω∗(A) ⊆ R

m. Let
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φ : A →→ R
m × I be a map to multisamples. For A ∈ A let Z = φ(A) = {zi1 , ..., zin}, zij ∈

R
m, {i1, ..., in} ⊂ I and let J+(ω) = {ij : ω ·zij > 0} denote the index set of ω–positive samples

from Z. If for every A ∈ A and every ω ∈ Rm there exists an ώ ∈ Rm such that

2.1.1. J+(ώ) ⊇ J+(ω)
2.1.2. RA(ώ) = RA(ω)
2.1.3.

(
ω0, ω1 ∈ Rm and J+(ώ0) ⊇ J+(ώ1)

)
⇒

(
RA(ω0) ≤ RA(ω1)

)
.

then R is PLD witnessed by φ.

3 The Generalized Loss Criterion

In this section we determine computable maps φ that witness the PLD property for a generalized
loss criterion. Through appropriate choices of a loss function we show how this criterion realizes
several important criteria encountered in standard learning problems for linear machines and
linear classifiers.

3.1 The M–Class Problem with Linear Machines

Consider the following M–class learning criterion. Let N be the set of natural numbers
and consider the set A of all multisamples from R

d × RM × N . The multisample A =
{(x1, l1), ..., (xn, ln)} ∈ A is a training set with n samples where xi ∈ Rd is the feature vector
for the i–th sample and li = (li(0), ..., li(M − 1)) ∈ RM is the corresponding loss vector. The
value li(j) represents the loss incurred when xi is assigned to class j. LetM = {0, 1, ...,M −1}
and ω = (w1, w2, ..., wM ) ∈ RM(d+1), and consider the family of linear machines fω : Rd →M
defined by

fω(x) = max
k∈Kω(x)

k (1)

where Kω(x) is the subset of M given by

Kω(x) = arg max
k∈M

wk · (1, x). (2)

The generalized loss criterion R : A× Rd+1 → R is defined by

RA(ω) =
n∑
i=1

li(fω(xi)). (3)

The following theorem is proved in Cannon, et al. (Cannon et al., 2003).

Theorem 3.1. The function R : A× Rd+1 → R defined by ( 3) is PLD witnessed by the map
φ in Definition 3.1 below.

The map φ described here is an extension of Kesler’s construction for the multiclass problem
(see p. 266 in (Duda, Hart, & Stork, 2000), pp. 87–93 in (Nilsson, 1990), and (Smith, 1969)).
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Definition 3.1. Let Z = (1 × Rd)M and let ρ : Rd →→ Z ×N 2 be the map ρ = ρ2ρ1 where
ρ1 : Rd → 1 × Rd is defined by x 7→ (1, x) and ρ2 : 1 × Rd →→ Z × N 2 is the map to
multisamples defined by

ξ 7→ {..., (ζjk, jk), ...}, 1 ≤ j ≤M, k : 1 ≤ k ≤M,k 6= j

where ζjk ∈ Z is the vector obtained by concatenating M vectors as follows: ξ = (1, x) is
placed in the j–th position, −ξ in the k–th position, and zero vectors are placed in the other
M − 2 positions as illustrated below,

ζjk = (0...0 ξ︸︷︷︸
jth

0...0 −ξ︸︷︷︸
kth

0...0).

Now define ζijk to be the jk–th member of ρ(xi). Let ε > 0 and define

∆ijk =

{
ε, li(j) = li(k)
li(k)− li(j), otherwise

, 1 ≤ i ≤ n, 1 ≤ j ≤M,k : 1 ≤ k ≤M,k 6= j.

With zijk = ∆ijkζijk the map φ : A →→ Z ×N 3 to multisamples is given by

φ(A) = {(zijk, ijk) : ∆ijk > 0}.

Important special cases of the generalized loss criterion are obtained when yi ∈ M is the
class label for the i–th sample and we set loss values as follows.

1. The classification error criterion is obtained by setting

li(j) = I(j 6= yi), ∀i, j

where I(·) is the indicator function that takes a value 1 when its argument is true and 0
otherwise.

2. The classification loss criterion is obtained by setting

li(j) = c(j, yi), ∀i, j

where c is a M × M loss matrix. This criterion is often employed with the diagonal
elements of c set to 0 (so that the loss for correct classification is 0). The off–diagonal
elements represent losses for each of the M(M −1) different error types. Setting c(j, j) =
0,∀j and c(j, k) = 1,∀j 6= k gives the classification error criterion above which is also
called the “0-1” loss criterion.
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3.2 The 2–Class Problem with Linear Classifiers

When M = 2 it is simpler to use a linear classifier than a 2–class linear machine. In this
section we prove the PLD property for the general loss criterion over linear classifiers. As a
consequence we obtain a map φ that is much simpler than Definition 3.1. In addition we show
how, for this criterion, the Ratchet algorithm can be derived as a modification of the Pocket
algorithm (Gallant, 1990).

We consider the same learning criterion described in the previous section except that we
restrict to M = 2 and we replace the class of linear machines with the class of linear classifiers
fω : Rd → {0, 1} defined by

fω(x) =

{
0, ω · (1, x) ≤ 0
1, ω · (1, x) > 0

(4)

where ω ∈ Rd+1.

In addition to the special cases of the generalized loss criterion described in the previous
section, a third case arises here. The weighted classification error criterion is obtained by
setting

li(j) = γiI(j 6= yi)

where γi ≥ 0, i = 1, 2, ..., n and yi ∈ {0, 1} is the class label for the i–th sample. This criterion is
encountered in many boosting algorithms. For example each round of the AdaBoost algorithm
determines new values for γi, i = 1, 2, ..., n, and then seeks a base classifier that minimizes the
corresponding weighted classification error (Freund & Shapire, 1997).

We now describe how the Ratchet algorithm can be derived as a modification of the Pocket
algorithm. Gallant introduced Pocket to minimize the classification error criterion for linear
classifiers. Pocket operates by running the randomized perceptron algorithm on the multisam-
ple Z = {z1, ..., zn}, zi = (2yi − 1)(1, xi), computing the run length for each ω visited (i.e. the
number of consecutive ω–positive samples encountered before ω is modified by the algorithm),
and retaining the ω(k) with the largest run length in the “pocket”. Gallant also introduces a
variation called Pocket-with-Ratchet that places a new value of ω in the pocket only when it
has both a larger run length and witnesses a smaller criterion value. These Pocket algorithms
are attractive because the run length is very simple to compute, but they may not be appro-
priate for the generalized loss criterion. For example consider the obvious adaptation of the
Pocket-with-Ratchet algorithm that operates on the multisample Z above and replaces the
value of ω in the pocket when the run length is larger and the criterion value RA(ω) is smaller.
With li(j) = I(j 6= yi) the criterion is minimized when the number of positive samples in Z is
maximized and so values of ω with larger run lengths are more likely to have smaller criterion
values, but this is not necessarily true for the generalized loss. In fact it seems unlikely that
any statistic computed on ω–positive samples only can be used to order the classifier space for
the generalized loss. More generally the determination of a suitable replacement for the run
length rule remains an open problem. The Ratchet algorithm is obtained by removing the
run length rule from Pocket-with-Ratchet so that a value of ω with the smallest criterion
value is saved in the pocket. This requires that the criterion value be computed each time ω
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is modified and therefore requires more computation than the Pocket algorithms, but it yields
a viable algorithm. Indeed, Theorem 3.2 below verifies that the generalized loss criterion for
linear classifiers is PLD witnessed by a map defined by zi = (li(0)− li(1))(1, xi).

Theorem 3.2. The function R : A×Rd+1 → R defined by ( 3) with M = 2 and fω defined by
( 4) is PLD witnessed by the map φ : A →→ R

d+1 × N defined by φ({(x1, l1), ..., (xn, ln)}) =
{z1, ..., zn}, zi = (li(0)− li(1))(1, xi).

Proof. For any A ∈ A and any ω ∈ Rd+1 the criterion value is a finite sum of terms that take
on a finite number of values and therefore the criterion achieves its infimum on a nontrivial set
Ω∗(A) ⊆ Rd+1. Define ξi = (1, xi) and write

RA(ω) =
n∑
i=1

li(fω(xi))

=
n∑
i=1

li(0)I(ω · ξi ≤ 0) + li(1)I(ω · ξi > 0).

Define ∆i = li(0)− li(1) and write the criterion value as

RA(ω) =
n∑
i=1

(
I
(
∆i > 0

) (
li(0)− |∆i|I(ω · ξi > 0)

)
+

I
(
∆i < 0

) (
li(1)− |∆i|I(ω · ξi ≤ 0)

)
+ I

(
∆i = 0

)
li(0)

)
=

n∑
i=1

max(li(0), li(1))− |∆i|
(
I(∆i > 0, ω · ξi > 0) + I

(
∆i < 0, ω · ξi ≤ 0

))
=

n∑
i=1

max(li(0), li(1))− |∆i|
(
I(∆i 6= 0,∆iω · ξi > 0) + I

(
∆i < 0,∆iω · ξi = 0

))
.

The definition of φ gives zi = ∆iξi so that

RA(ω) =
n∑
i=1

max(li(0), li(1))− |∆i|
(
I(∆i 6= 0, ω · zi > 0) + I

(
∆i < 0, ω · zi = 0

))
= C −

n∑
i=1

|∆i|
(
I(∆i 6= 0, ω · zi > 0) + I

(
∆i < 0, ω · zi = 0

))
.

(5)

where C =
∑n

i=1 max(li(0), li(1)). To complete the proof we verify conditions 2.1.1-2.1.3 in
Lemma 2.1. Let Z = {z1, ..., zn}. For any ω ∈ Rd+1 let

δ =

{
1, ω · zi = 0 for all zi ∈ Z
minzi∈Z,ω·zi 6=0 |ω · zi|, otherwise

and let

ώ = ω − (δ/2, 0) , 0 ∈ Rd.
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This gives

ώ · zi ≥ |∆i|δ/2 > 0, when (∆i 6= 0, ω · zi > 0) or (ω · zi = 0,∆i < 0)
ώ · zi ≤ −|∆i|δ/2 < 0, when (∆i 6= 0, ω · zi < 0) or (ω · zi = 0,∆i > 0)

and therefore condition 2.1.1 holds and (5) can be written

RA(ω) = RA(ώ) = C −
n∑
i=1

|∆i|I(ώ · zi > 0) = C −
∑

i∈J+(ώ)

|∆i|.

which verifies condition 2.1.2. The right hand side of this expression also establishes a mono-
tonic relation between nested sets J+ and the values of RA. This verifies condition 2.1.3 and
completes our proof. �

4 The Neyman–Pearson Criterion

The Neyman–Pearson problem is a 2–class problem where the goal is to maximize the correct
classification for one class subject to an upper bound on the classification error for the other
class. Cannon et al. (Cannon, Howse, Hush, & Scovel, 2002b) describe a learning strategy
for the Neyman–Pearson problem that determines a classifier from sample data by solving a
constrained optimization problem. We restrict to linear classifiers and reformulate this con-
strained optimization problem as an unconstrained optimization problem. We then provide a
simple map φ that witnesses the PLD property for the unconstrained optimization criterion.

Consider the set A of all multisamples from R
d × {0, 1} × N . The multisample A =

{(x1, y1), ..., (xn, yn)} ∈ A is a training set with n samples where xi ∈ Rd is the feature vector
for the i–th sample and yi ∈ {0, 1} is the corresponding class label. Let fω : Rd → {0, 1} be
the class of linear classifiers defined by (4). Let nj = |{i : yi = j}| be the number of samples
with label j. The fraction of samples from class 0 that are correctly classified by fω is denoted

c0(fω) =
1
n0

∑
i:yi=0

I(fω(xi) = 0),

and the fraction of samples from class 1 that are incorrectly classified by fω is denoted

e1(fω) =
1
n1

∑
i:yi=1

I(fω(xi) 6= 1).

If n0 = 0 we define c0(fω) = 1 and if n1 = 0 we define e1(fω) = 0. The Neyman–Pearson
learning strategy chooses a classifier that solves the constrained optimization problem (Cannon
et al., 2002b)

maxω∈Rd+1 c0(fω)
subject to e1(fω) ≤ α

(6)

8
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where α ≥ 0. Since c0 is bounded and the set of linear classifiers that satisfy the constraint
is nontrivial for any training set A ∈ A we can reformulate (6) as the following unconstrained
optimization problem

min
ω∈Rd+1

−c0(fω) + p(e1(fω)− α) (7)

where the penalty function p is defined by

p(θ) =

{
0, θ ≤ 0
∞, θ > 0.

Consequently the Neyman–Pearson criterion R : A× Rd+1 → R is defined by

RA(ω) = −c0(fω) + p(e1(fω)− α). (8)

The following theorem provides a simple map φ that witnesses the PLD property for this
criterion.

Theorem 4.1. The function R : A× Rd+1 → R defined by ( 8) is PLD witnessed by the map
φ : A →→ R

d+1 ×N defined by φ({(x1, y1), ..., (xn, yn)}) = {z1, ..., zn}, zi = (2yi − 1)(1, xi).

Proof. This proof is structured similarly to the proof of Theorem 3.2. For any A ∈ A and any
ω ∈ Rd+1 the criterion value is a finite sum of terms that take on a finite number of values
and therefore the criterion achieves its infimum on a nontrivial set Ω∗(A) ⊆ R

d+1. Define
ξi = (1, xi) and write

RA(ω) = −c0(fω) + p(e1(fω)− α)

= − 1
n0

∑
i:yi=0

I(ω · ξi ≤ 0) + p

 1
n1

∑
i:yi=1

I(ω · ξi ≤ 0)− α

 .

Now rewrite the argument of the penalty function in terms correctly classified samples,

RA(ω) = − 1
n0

∑
i:yi=0

I(ω · ξi ≤ 0) + p

1− α− 1
n1

∑
i:yi=1

I(ω · ξi > 0)

 .

The definition of φ gives zi = −ξi when yi = 0, and zi = ξi when yi = 1, which yields

RA(ω) = − 1
n0

∑
i:yi=0

I(ω · zi ≥ 0) + p

1− α− 1
n1

∑
i:yi=1

I(ω · zi > 0)

 . (9)

To complete the proof we verify conditions 2.1.1-2.1.3 in Lemma 2.1. Let Z = {z1, ..., zn}. For
any ω ∈ Rd+1 let

δ =

{
1, ω · zi = 0 for all zi ∈ Z
minzi∈Z,ω·zi 6=0 |ω · zi|, otherwise

9
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and let

ώ = ω − (δ/2, 0) , 0 ∈ Rd.

This gives

ώ · zi ≥ δ/2 > 0, when (ω · zi > 0) or (ω · zi = 0, yi = 0)
ώ · zi ≤ −δ/2 < 0, when (ω · zi < 0) or (ω · zi = 0, yi = 1)

and therefore condition 2.1.1 holds and (9) can be written

RA(ω) = RA(ώ) = − 1
n0

∑
i:yi=0

I(ώ · zi > 0) + p

1− α− 1
n1

∑
i:yi=1

I(ώ · zi > 0)


which verifies condition 2.1.2. Defining J+

0 (ώ) = {i ∈ J+(ώ) : yi = 0} and J+
1 (ώ) = {i ∈

J+(ώ) : yi = 1} gives

RA(ω) = − 1
n0
|J+

0 (ώ)|+ p

(
1− α− 1

n1
|J+

1 (ώ)|
)

The first term on the right side is monotonically decreasing in |J+
0 (ώ)| and the penalty term is

monotonically decreasing in |J+
1 (ώ)|. Since J+(ώ) = J+

0 (ώ) ∪ J+
1 (ώ) and J+(ώ0) ⊇ J+(ώ1)⇒

J+
j (ώ0) ⊇ J+

j (ώ1), j = 0, 1, the right side establishes a monotonic relation between nested sets
J+ and the values of RA. This verifies condition 2.1.3 and completes our proof. �

5 Experiment

We describe an experiment with the image–seg data set from the UCI repository (Blake &
Merz, 1998). This data set represents an M = 7 class classification problem for digital images.
It consists of n = 2310 labeled samples, with nj = 330 samples for each class j = 0, 1, ..., 6.
Each sample consists of a d = 19 dimensional feature vector with real valued components and
a class label.

We compare the following two learning algorithms for linear machines. The first uses the
Ratchet algorithm to minimize the classification error criterion (i.e. “0–1” loss) described
in Section 3.1. The second uses a more conventional method to determine the parameters
ω = {w1, ..., wM} of the linear machine. It employees M instantiations of a 2–class classifica-
tion error minimization algorithm for linear classifiers. The j–th instantiation determines the
parameter wj by invoking the 2–class algorithm with label values set to 0 for samples where
yi 6= j and 1 for samples where yi = j. We used the Pocket algorithm for this purpose.

We use 10–fold cross validation to produce an estimate of the average classification error.
Each run of the Ratchet and Pocket algorithms was terminated after 106 iterations. Even
though Pocket has a lower average run time per iteration, the total run time for 7 instanti-
ations of Pocket was substantially longer than a single run of Ratchet. The error estimates
summarized in the table below suggest that Ratchet provides superior performance.

Ratchet Pocket

Error Estimate 8.97 % 11.9 %
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